Widget by Ayuda para Blog

martes, 1 de marzo de 2011

Equipo 2


Identifica términos relacionados con las características de los individuos contenidas en sus genes y su interrelación

El Genoma debe ser entendido como la totalidad de la información genética almacenada en el ADN de las células. Cada persona tiene su propio genoma, el cual guarda una gran similitud (99,8%) con todos los de su propia especie y tan solo se diferencia de la del chimpancé en algo más del 1%. Esa información, que se encuentra almacenada en todas y cada una de sus células y que le define e identifica como ser único e independiente, es lo que conocemos como su patrimonio genético o genoma.
El genoma humano, ese gran libro de la vida que contiene las instrucciones que determinan las características físicas y en parte psicológicas e intelectuales del individuo, ha sido recientemente descifrado en más del 99% de su totalidad, gracias al esfuerzo de un consorcio público internacional (Proyecto Genoma Humano) y una empresa privada (Celera). Pero, habrá que esperar algunos años más, hasta disponer de la información completa del genoma.
Una vez conocida la secuencia de letras contenidas en el ADN que simbólicamente podemos considerar que forman las palabras y frases de este gran libro de la vida, queda todavía un importante camino que recorrer, y es conseguir interpretar y comprender dicha información, saber la localización y relevancia de cada uno de los genes así como sus implicaciones en el diagnóstico de las enfermedades y en la terapéutica personalizada de cada individuo. En este sentido, la secuenciación del genoma abre una nueva avenida en el conocimiento y fundadas expectativas de interés en el área socio-sanitaria. Pero quedan todavía importantes cuestiones por resolver antes de que estas expectativas sean una realidad.


LOCALIZACIÓN DEL GENOMA

El genoma humano está constituido por un genoma nuclear y otro mitocondrial. La parte más importante del genoma se localiza en el núcleo de la célula (genoma nuclear) el cual está separado del resto por una envoltura nuclear que limita y regula el intercambio que se establece entre el interior del núcleo (en donde se encuentra el ADN) y el exterior del mismo (citoplasma celular) donde se encuentra la maquinaria relacionada con la decodificación de la información genética, responsable en última instancia de la síntesis de proteínas. El genoma nuclear, que está dispuesto en forma lineal y representa el genoma al que habitualmente nos referimos al hablar del genoma humano, está constituido por algo más de tres mil millones de pares de bases (o nucleótidos) conteniendo aproximadamente unos mil genes. Cada cromosoma nuclear está constituido por una sola hebra de doble cadena de ADN (lógicamente asociada a proteínas) con una longitud de 1,7 a 8,5 cm, conteniendo entre 50 y 250 millones de pares de bases de nucleótidos. Sin embargo, esta molécula habitualmente se encuentra en grados de mayor o menor empaquetamiento y esta especial forma de replegamiento de los cromosomas permite que todo el genoma pueda ser almacenado en el espacio nuclear de la célula, que viene a representar una esfera con un diámetro de unas cinco milésimas de milímetro, en donde se almacena una información equivalente al contenido de 800 Biblias. El otro genoma es el genoma mitocondrial, ubicado en la matriz de un orgánulo celular (mitocondria).










HERENCIA DEL GENOMA

En nuestro organismo podemos diferenciar dos grandes grupos celulares, en función de la carga genómica disponible. Unas son las células somáticas las cuales participan estructural y funcionalmente en la actividad de nuestro organismo y son la mayoría de las que forman parte de nuestro ser. Se caracterizan por disponer de una información genética nuclear duplicada (numero diploide de cromosomas) dispuesta en 22 pares de cromosomas homólogos (autosomas) y dos tipos de cromosomas sexuales X e Y, de cuya combinación depende el sexo femenino (XX) o masculino (XY) de la persona. Las otras células, presentes en menor proporción, son aquellas cuya función está relacionada con la fecundación y son las células germinales o gametos, denominadas óvulo (en el caso de la mujer) o espermatozoide (en el hombre). Todas ellas disponen de una dotación simple de cromosomas (número haploide) constituido por 22 autosomas más un cromosoma sexual.

Los genes son la parte más importante del genoma porque es la región que define las características estructurales y funcionales de nuestro organismo. Sin embargo, debemos señalar que las regiones génicas representan solo el 3% del genoma, mientras que el resto de este gran libro de la vida, es decir, el 97% restante de las secuencias de nucleótidos presentes en el ADN, no tiene una función claramente codificante y desempeña funciones reguladoras, estructurales y, en gran medida, su función es desconocida. Mientras tanto, debemos señalar que el conocimiento adquirido en los últimos años sobre el genoma nos ha de permitir comprender mejor la normalidad y la enfermedad, las limitaciones y expectativa de vida de un individuo, las bases moleculares de la enfermedad, los mecanismos de la diferenciación celular, la regulación de la expresión de los genes, la biodiversidad de los individuos y las especies en la naturaleza y de cómo en la actualidad los avances en la tecnología del ADN recombinante o ingeniería genética, sumados a los conocimientos derivados del Proyecto Genoma Humano, tendrán una repercusión directa en las nuevas terapias basadas en la utilización elementos genéticos (terapia génica), así como ofrecernos un marco de comprensión del significado potencial de la clonación humana y su potencial aplicación en el trasplante, como fuente inagotable de tejidos y órganos.




¿Qué son los genes y dónde se encuentran?

Existen genes en todo aquello que está vivo, o que estuvo vivo. Existen genes en las personas, las moscas, el jamón, el tomate, las bacterias etc. Un filete de 200 g contiene 750.000.000.000.000 genes.
Un gen es un código que rige nuestro aspecto físico y nuestras características. Existen, por ejemplo, genes que deciden si vamos a tener los ojos azules o castaños. La mitad de nuestros genes son heredados de la madre y la otra mitad del padre.
Las plantas también tienen genes. Éstos deciden el color de las flores y la altura que una planta podrá alcanzar. Como en las personas, las características de una planta serán transferidas a sus "hijos": las semillas que crecen y se transforman en nuevas plantas.
¿Qué es la modificación genética?

La modificación genética altera los genes y, consecuentemente, las características del individuo. Es posible, por ejemplo, modificar genéticamente fresas para que se mantengan frescas durante más tiempo, y el arroz puede ser modificado genéticamente de forma que contenga un mayor valor vitamínico.
Cuando un científico modifica genéticamente una planta, introduce un gen extraño en los genes de la propia planta. Puede ser, por ejemplo, un gen de una bacteria resistente al pesticida. Como resultado, la planta modificada genéticamente hereda las características contenidas en el código genético, y se hace apta también para soportar los pesticidas.
Con la modificación genética, es posible transferir genes de una especie a otra. Esto es así porque todos los genes, tanto humanos como vegetales, animales o bacterianos son creados a partir del mismo material. Los científicos genéticos disponen así de una enorme cantidad de características genéticas donde elegir.
¿Cómo trabaja un científico genetista?

La modificación genética de las plantas ocurre en varias fases:
1.
El científico encuentra y aisla el gen con las características genéticas deseadas. Este proceso se denomina cartografía.
2.
Se hacen varias copias del gen aislado. El proceso de copia se denomina PCR.
3.
Se transfieren los genes deseados a los genes de las propias plantas (utilizando un pedazo de tejido de la planta). Para introducir los genes deseados en la planta, el científico tiene tres opciones. Puede utilizar un "cañón de genes", una bacteria del suelo o un material llamado protoplasto. Los métodos de inserción de genes se llaman transformación.
4.
Se crea una nueva planta a partir del tejido de la planta modificada genéticamente.
5.
Se verifica si los genes insertados funcionan conforme a lo esperado.
6.
Se verifica también si el gen introducido aparece en las semillas de la planta.

¿Cómo sabemos si la modificación genética fue correcta?

Raramente se puede ver a simple vista si una planta o un animal ha sido modificado genéticamente. Los científicos desarrollan, para esto, algunas técnicas útiles que les sirvan de ayuda.
Por ejemplo, existe un test de coloración especial que permite identificar si una planta está modificada genéticamente. Cuando la planta está modificada genéticamente, el científico inserta un "gen marcador" suplementario en la planta. El gen marcador puede tener diversas características; por ejemplo, el cambio de color de la planta cuando se expone a un test químico.
De este modo, los científicos pueden identificar si la planta fue o no genéticamente modificada efectuando un test químico y verificando el color de la planta.
¿Cuál es la diferencia entre la modificación genética y el procedimiento tradicional?

Mucho antes de descubrir la modificación genética, los agricultores ya mejoraban sus cultivos a través de aquello que llamamos hoy "procedimiento tradicional".
El procedimiento es el cruce de los ejemplares mejores, mayores, más bonitos o más sabrosos de una cierta especie unos con otros de forma que se obtenga una planta o un animal aún mejor, mayor, más bonito o más sabroso.
En el procedimiento tradicional, los genes se transfieren de una planta a otra. Este es también el caso de la modificación genética, pero el modo de hacerlo es muy diferente.
La modificación genética es una técnica más precisa, en la que se puede ser exacto en la transferencia de las características deseadas. En el procedimiento tradicional, no es posible evitar la eventualidad de transferencia de otras características.
En el procedimiento tradicional, las características sólo pueden ser permutadas entre especies idénticas o muy semejantes. En la modificación genética, las características pueden ser transferidas de una especie a otra muy diferente, y lo mismo ocurre entre plantas y animales.
La modificación genética se produce más rápidamente que el procedimiento tradicional.
¿De qué otras formas pueden ser alterados los genes?

No sólo se utiliza la modificación genética para alterar los genes de plantas y animales.
Las alteraciones espontáneas, la radiación, los productos químicos y el procedimiento tradicional también pueden alterar las características de una planta o animal.
La alteración espontánea de genes ocurre naturalmente, y a veces sin ninguna eficacia. Una alteración espontánea puede llevar al desarrollo de características positivas y negativas. El método no es muy adecuado si la intención es crear alteraciones específicas.
La radiación y los químicos pueden ser utilizados para efectuar la alteración genética. Ambos elementos se utilizan en el procesamiento de plantas.
En el procedimiento tradicional se cruzan plantas y animales muy idénticos. Podrá ser el maíz y el nabo redondo o un caballo y un burro. De este modo, ocurren diversas combinaciones de genes en la progenitura. Los especímenes con características deseables son seleccionados a lo largo de varias generaciones. Los cultivos y el ganado que vemos hoy son el resultado del procedimiento tradicional.
¿Todo puede ser modificado genéticamente?

Sí. En principio cualquier cosa viva puede ser modificada genéticamente: animales, personas, plantas y bacterias.
En otras palabras, es posible transferir características de un pez a una fresa. Pero cuanto más diferentes sean las especies, más difícil es. Lo más fácil es modificar genéticamente las especies más semejantes.
No todas las características pueden ser transferidas. Algunas características ocurren sólo por la interacción entre gran cantidad de genes. Muy raramente los científicos tienen una perspectiva suficientemente buena de esta interacción para poderla recrear.
Actualmente, los científicos trabajan intensamente en la cartografía de genes en los humanos y en los cerdos. Tal vez esto les proporcione conocimientos y perspectivas suficientes para que en el futuro puedan crear modificaciones genéticas aún más complejas que las actuales.

4 comentarios:

  1. Aqui anexamos un cuestionario
    para que le entiendan mejor :)

    ResponderEliminar
  2. interesantes datos , hay mucha información que desconocía :)

    ResponderEliminar
  3. es muchoo jaja demasiadas letraaas pro bien!

    ResponderEliminar

Por Favor de la manera mas atenta pedimos que:
1.- Dejen su nombre
2.- Y que no hagan comentarios ofensivos o con un vocabulario inmoderado.

¡Gracias!:)